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Abstract. We study the 3-form flux Hµνλ associated with the semi-classical geometry of G/H gauged
Wess–Zumino–Witten models. We derive a simple, general expression for the flux in an orthonormal frame
and use it to explicitly verify conformal invariance to the leading order in α′. For supersymmetric models,
we briefly revisit the conditions for enhanced supersymmetry. We also discuss some examples of non-abelian
cosets with flux.

1 Introduction

Wess–Zumino–Witten (WZW) models and their cosets
(gauged WZW models) provide examples of string back-
grounds where both the exact CFT description and the
geometry of the target space are well known. The coset
space G/H is obtained by the identification g ∼ hgh−1

(g ∈ G, h ∈ H); hence its geometry is quite different from
that of the usual left coset (g ∼ hg). The “adjoint coset”
is also required to have non-trivial dilaton and three-form
flux (Hµνλ) on it in order to ensure conformal invariance.

For left cosets, the invariant one-forms and structure
constants offer a clear intuitive picture of the geometry.
In [1], analogous one-forms were introduced for adjoint
cosets and were shown to define an orthonormal frame for
the metric. The goal of this note is to take advantage of
these one-forms to better understand the geometry of the
adjoint coset with emphasis on the properties of the flux.

We first derive a simple, general expression for the flux
in the orthonormal frame.1 As a consistency check, we
use it to verify conformal invariance to the leading order.
We then specialize to supersymmetric cases and comment
on the enhancement of world-sheet supersymmetry from
N = 1 to N = 2 in the presence of the flux. Finally, we
discuss the conditions for vanishing of the flux and two
examples of non-abelian cosets with dim(G/H) = 6. Our
result may be useful in the study of how mirror symmetry
works [3] (see also [4]) in an NS-NS flux background and
the geometric aspects of D-branes in the gauged WZW
model [5].

a e-mail: sangmin.lee@cern.ch
1 Throughout this paper, we work only in the semi-classical

(α′/R2 ∼ 1/k � 1) limit because the problem of obtaining the
exact expression for the flux is quite involved [2].

2 Setup

We begin with a very brief review of the WZW model and
its cosets to set up our notation. LetG be a compact, simple
Lie group. The Lie algebra of G is written in terms of an
orthonormal basis of anti-Hermitian generators as follows:

[TA, TB ] = fAB
CTC , Tr(TATB) = −δAB . (1)

To describe the geometry of the group manifold, we intro-
duce the standard one-forms:

g−1dg = EATA, dg g−1 = ẼATA,

ẼA = CABEB , CAB = − Tr(TAgTBg−1), (2)

CCT = 1.

The WZW model defined for G,

SG = − k

4π

∫
d2zTr(g−1∂g · g−1∂̄g) + ikΓWZ, (3)

corresponds to a sigma model on the group manifold with
constant dilaton and the following metric and flux:

ds2 = EAEA, H =
1
6
fABCEAEBEC . (4)

More precisely, the metric and the flux should be scaled
by the radius square R2 = kψ2α′/4, where the integer k
is the level of the WZW model and ψ is the highest root
of Lie(G). We will suppress R2 in the following unless its
precise value becomes important.

We will consider cosets of type G/H, where rank(H) =
rank(G), and H acts on G as g → hgh−1. We use (a, b, . . .)
indices for Lie(H) and (α, β, . . .) indices for its orthogo-
nal complement. The coset theory is realized as a gauged
WZW theory with the following action and gauge trans-
formation law:

S = SG + SA, (5)
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SA =
k

2π

∫
d2zTr(Āg−1∂g −A∂̄gg−1 − ĀA+ g−1AgĀ)

= − k

2π

∫
d2z(ĀaEa −AaẼ

a −Aa(ηab − Cab)Āb),

g → u−1gu, Ai → u−1(Ai + ∂i)u. (6)

3 The expression

Since the action is quadratic in the non-propagating gauge
field, it is easy to integrate out the gauge field and find [1,6]

GMN = G
(0)
MN + 2(M−1)abEa(M Ẽ

b
N), (7)

BMN = B
(0)
MN + 2(M−1)abEa[M Ẽ

b
N ], (8)

e−2φ = det M, (9)

where Mab ≡ δab − Cab. Although GMN and BMN carry
dG = dim(G) indices, they actually depend only on the
“coset directions,” as can be seen from the existence of the
dH = dim(H) null vectors

Za
M = Ea

M − Ẽa
M = MabEb

M − CaβEβ
M

=⇒ GMNZa
M = 0. (10)

The removal of dH degrees of freedom in an gauge-invariant
way can be made clear with the help of the one-forms [1]

Hα = Eα + Ea(M−1)abCbα (Za ·Hα = 0). (11)

As shown in [1], these one-forms define an orthonormal
frame, i.e.,

ds2 = HαHα. (12)

It is natural to write down the flux also in this frame.
A lengthy but straightforward computation using the ba-
sic identities

dCAB = −CADfDBCEC , (13)

fABC = CADCBECCF fDEF , (14)

fACDfBCD = cGδAB , facdfbcd = cHδab, (15)

fAB[Cf
B
DE] = 0, (16)

fabγ = 0, (17)

shows that the flux also takes a very simple form in
this frame:

H = 1
6

{
fαβγ + 3A[αβγ]

}
Hα ∧Hβ ∧Hγ ,

Aαβγ = faαβ(M−1)abCbγ . (18)

This expression is the starting point of our discussion in
what follows.

It is useful to note that the gauge transformation (6)
translates into a local Lorentz transformation on the viel-
beins Hα. Suppose we choose a gauge slice g0(x) with a set

of coordinates {xµ} (µ = 1, . . . , dG − dH). Then, consider
the following type of gauge transformation:

g0(x) → h(fm(x)) g0(x) h(fm(x))−1, (19)

where h(ym) (m = 1, . . . , dH) define a coordinate system
on H. The functions fm(x) shift the gauge slice from the
original one without inducing a coordinate change. Upon
this type of gauge transformation, the one-forms Ea, Eα
and Hα transform as

Ea → Qab(Eb − ecMcb),

Eα → Qαβ(Eβ + ecCcβ), (20)

Ha → Qαβ(x)Hβ ,

where QAB = − Tr(TAhTBh−1) and h−1dh = eaTa.
Clearly, the change of gauge slice results in a local

Lorentz transformation on Hα.

4 Conformal invariance

The leading order conformal invariance condition for a
sigma model is well known to be

RMN − 1
4
HMIJHN

IJ + 2∇M∇Nφ = 0, (21)

∇M (e−2φHMIJ) = 0, (22)

e2φ∇2(e−2φ) − 1
6
H2 = Λ. (23)

For WZW or coset models, the constant Λ on the RHS
of the third equations equals 2(∆d)/3α′, where (∆d) is
the deviation of the “dimension of the target space” (more
precisely, the central charge) from an integer value.

For a WZW model, it follows straightforwardly from
dEA = − 1

2 fABCEB ∧ EC that

4RAB = HACDHBCD = fACDfBCD = cGδAB , (24)

H2 =
cGdG
R2 =

4cGdG
kψ2α′ . (25)

At a large k, the value ofH2 agrees with the central charge
of the WZW model at level k subtracted from its value in
the k → ∞ limit (recall c = kψ2dG

kψ2+cG
). Equation (22) follows

from the Jacobi identity for the structure constants.
For a coset space, the computation is somewhat more

involved. As usual, the metric connection is derived from

dHα = − 1
2 (fαβγ +Aβγα)Hβ ∧Hγ

−(M−1)abfαβbHβ ∧ Ea. (26)

The last term ensures that the spin connection ωαβ trans-
forms inhomogeneously under a local Lorentz transforma-
tion. It also produces many non-tensor terms in the inter-
mediate steps of the computation of the curvature tensor.
This complication can be avoided by using the gauge trans-
formation (20) to set Ea = 0. This can be always done at
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any point on the coset space, although care should be taken
to include the derivatives of Ea, which do not vanish in
general. In this special gauge, the connection is given by

ωαβ = − 1
2 (fαβγ −Aαβγ +Aβγα −Aαγβ)Hγ

≡ ωαβγHγ , (27)

and the components of its derivatives that are relevant in
computing Rαβ are

d(ωαβγ) = 1
2 (Aαβγ|δ −Aβγα|δ +Aαγβ|δ)Hδ

+∆ωaβγ|δHδ,

Aαβγ|δ = Aαβσ(Aσδγ + fσδγ) + faβγ(M−1)abCbcfcδγ ,

∆ωαβ[γ|δ] = − 1
2 (M−1)abfαβbfaγδ. (28)

Using these results and the basic properties (13)– (17), it
is straightforward to verify the conformal invariance con-
ditions (24) including the precise value of Λ.

5 N = 2 supersymmetry

It iswell known [7,8] that supersymmetry of theN = 1G/H
coset is enhanced to N = 2 when T ≡ Lie(G)−Lie(H) de-
composes as T = T+⊕T−, where T± are complex conjugate
representations of H with [T+, T+] ⊂ T+, [T−, T−] ⊂ T−.
In complex notation, closure under commutation implies
that fijk = 0 = fīj̄k̄ and fija = 0 = fīj̄a. It follows that the
(3, 0) and (0, 3) components of the flux vanish. This fact is
in agreement with a related analysis [9] of supersymmetry
enhancement of sigma models in the presence of the flux;
in [9], it was shown that in order for an N = 1 supersym-
metric sigma model to have an extra supersymmetry, the
target space should be complex and the (3, 0) and (0, 3)
components of the flux should vanish.

6 Examples

Given the formula for the flux (18), it is natural to ask
what the conditions are for a G/H coset to have non-
vanishing flux. First, we note that the flux cannot vanish
when fαβγ �= 0. The reason is that fαβγ and A[αβγ] are or-
thogonal to each other (fαβγAαβγ = 0) as follows from (15)
and (17), and therefore cannot cancel each other. ForN = 2
supersymmetric cosets (Kazama–Suzuki models), all such
examples have been classified in [10]. The simplest among
them is SO(5)/SU(2) × U(1) where su(2) is embedded
along a pair of long roots in so(5).

For cosets with fαβγ = 0, it remains to determine when
A[αβγ] also vanishes. To our knowledge, the full answer to
this question is not known. In the literature, all known
examples with fαβγ = 0 and A[αβγ] �= 0 are abelian cosets
(i.e., the subsetH is abelian) [11–15].2 Several non-abelian

2 See [16] for an example of a (G×G′)/H coset that is rather
different from the G/H cosets considered here.

cosets with faβγ = A[αβγ] = 0 are also known [6, 17–23].
Using our formula (18) and a gauge choice similar to that
of [6], we have computed the flux for the two Kazama–
Suzuki models of dimension 6: SU(4)/SU(3) × U(1) and
SO(5)/SO(3) × SO(2). It turns out that A[αβγ] vanishes
for the former and not for the latter. It would be interesting
to develop a systematic method to determine whether a
given coset with fαβγ = 0 has vanishing flux. An algebraic
CFT description of coset models may turn out to be useful
to proceed in that direction.
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